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Abstract

In the present work a comprehensive methodology is proposed for calculating the Fickian diffusion coefficients in a multi-component solvents–

polymer system as a function of the solvents self-diffusion coefficients, the constituent chemical potentials and the process conditions. This

methodology is based on the application of well-established principles such as the Gibbs-Duhem theorem for diffusing systems along with the

friction coefficient concepts. The case of constant friction coefficient ratios is re-examined leading to a screening of the existing theories for multi-

component polymer systems. Finally, the described methodology is applied to the formamide–acetone–cellulose acetate (CA) system which is

used in the asymmetric membrane manufacture. The acetone evaporation process from this system is studied as a one-dimensional numerical

experiment. For this purpose, the evaporation process is modeled as a coupled heat and mass transfer problem with a moving boundary. The

Galerkin finite element method is used to simultaneously solve the non-linear governing equations. All the model parameters were estimated from

literature measurements leading to a fully predictive model. The model predictions are in excellent agreement with experimental data for polymer

solution weight and surface temperature vs. time thus validating the applied methodology for the calculation of friction coefficients.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-component diffusion in solvent–polymer systems is

of major importance in a number of industrial processes,

including membrane manufacture [1–6], foam and coating

formation [7], de-volatilization [8] and effectiveness of

polymerization reactors at high conversion [9–14].

The industrial importance of the multi-component diffusion

has led to the development of numerous physical theories for

solvent(s)–polymer systems [15–19] by using the well known

free volume theory [20]. Most theories [16–19] assume

constant friction coefficient ratios and relate friction coeffi-

cients [21–23] with pure substance properties such as

molecular weight, molar volume etc to describe the
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dependence of Fickian diffusion coefficients on temperature

and concentration.

In this work a novel theory is proposed for multi-component

diffusion in polymer solutions. This theory is based on the

Onsager reciprocal conditions [21–23] and the Gibbs-Duhem

equation [24]. In addition, it is shown for the case of constant

friction coefficients ratios that the following equation holds:

(zij/zkj)Zvi/vk where vi is the molar volume of ith substance in

the solution.

In this work, the generalized friction coefficient formalism

along with the various theories for friction coefficients

determination is briefly reviewed, the corresponding

equations relating the friction factors with solvent(s) self-

diffusion coefficients are derived and the special case of

constant friction coefficient ratios is re-examined. Finally, the

above theory is validated against established experimental

data for acetone evaporation from the formamide–acetone–

cellulose acetate system which is widely used in asymmetric

membrane preparation, results are presented and conclusions

are drawn.
2. Friction coefficients formalism

The origin of the friction coefficients concept can be found

in the works of Einstein and Satherland for binary diffusion
Polymer 46 (2005) 12626–12636
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Notation section

a free volume theory proportionality constant

(mol/m3)

ci molar concentration of the ith substance (mol/m3)

Ci auxiliary parameter, dimensionless

Cp specific heat capacity, J/(kg K)

D0 scaling factor (m2/s)

Dij diffusion coefficient (m2/s)

DTi auxiliary parameter (m2/s)

D0
i auxiliary parameter (m2/s)

D�
i self diffusion coefficient of the ith substance (m2/s)

D0i pro-exponential factor (m2/s)

E auxiliary parameter (J2 m2 s2 mol2/kg2)

Eij auxiliary parameter (J m s mol/kg)

F dissipation function (J/(m3 s))

h heat transfer coefficient (W/(m2 K))

Ji molar flux (mol/(m2 s))

jsi mass flux (kg/(m2 s))

k thermal conductivity (W/(m K))

K1i free volume parameter (m3/(kg K))

K2i free volume parameter (K)

L0 polymer solution initial axial length (m)

Lsup support axial length (m)

Lij onsager mobility coefficient (mol2/(J m s))

Mi molecular weight of the ith substance (g/mol)

N number of the constituents in the solution,

dimensionless

NA avogadro number

R universal gas constant (J/(mol K))

Ri weighted residual, dimensionless

s position of the moving boundary, dimensionless

T temperature (K)

Tg glass transition temperature (K)

ui volume fraction of ith substance, dimensionless

Vi local velocity (m/s)

VR velocity of an arbitrary framework (m/s)

Vs volume average velocity (m/s)

V(0) solvent molar volume at 0 K (m3/mol)

VFH average hole free volume per kilogram of solution

(m3/kg)

V�
i specific critical hole free volume of the ith

substance (m3/kg)
�Vi specific volume of the ith substance (m3/kg)

z axial coordinate (m)

Greek letters

a auxiliary parameter to scale friction coefficients

g overlap factor, dimensionless

DHi ith substance latent heat of vaporization (J/kg)

3 emissivity of the polymer solution, dimensionless

zij friction coefficient between the ith and jth

substance (J m s/mol2)

h dimensionless axial length

Q dimensionless temperature

l auxiliary function, dimensionless

mi chemical potential of the ith substance, J/mol

x ratio of the critical molar volume of the solvent

jumping unit to the polymer jumping unit critical

molar volume, dimensionless

r density (kg/m3)

ri mass concentration of the ith substance (kg/m3)

s Stefan-Boltzman constant (W/(m2 K4))

t dimensionless time

vi molar volume of the ith substance (m3/mol)

fi quadratic basis function, dimensionless

cij Flory–Huggins interaction parameter

ui weight fraction of the ith substance

Subscript

0 initial condition

int gas phase-polymer solution interface

s polymer solution

sup support
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[22]. Onsager [25], based on non-equilibrium thermodynamics,

applied for the fist time the friction factor concepts in multi-

component systems. In his view, the dissipation function F,

representing the free energy variation rate as a function of the

local molar flux densities (Ji, Jk) and the friction factors (zik) is

given as:

F Z
1

2

XN

iZ1

XN

kZ1

zikðJiJkÞ Z
1

2

XN

iZ1

XN

kZ1

zikcickðViVkÞ (1)

where the local velocity vector Vi is defined as Ji/ci, where ci is

the molar concentration of the ith substance.

When all the components in the mixture have the same

velocity V, the free energy density remains constant and the
dissipation function F is zero. Consequently,

1

2
V2

XN

iZ1

XN

kZ1

zikcick Z 0;
XN

kZ1

zikci Z 0

k Z 1; 2;.;N; i Z 1; 2;.;N

(2)

He also showed that the rate of free energy variation reaches

a maximum when the local gradients of chemical potential

have the following form:

dmi

dz
ZK

XN

kZ1

ckzikðVi KVkÞ i Z 1; 2; ::N (3)

The friction coefficients defined in Eqs. (1)–(3) are related to

the usual Fickian diffusion equations using the equations for
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the diffusion flux ðjsi Þ relative to the volume average velocity

Vs [26]:

jsi ZK
XNK1

jZ1

DijVrj ZriðViKVsÞV
1

; Z
XN

iZ1

uiVi;
XN

iZ1

js �Vi Z0

(4)

where Dij are the respective Fickian diffusion coefficients, �Vi

represents the specific volume and ui stands for the volume

fraction of the ith substance, respectively.

By using Eqs. (3) and (4), one can directly write the Fickian

diffusion coefficients Dij in terms of the friction coefficients zij.

Unfortunately, the concentration and temperature dependence

of the friction coefficients is still unknown. Therefore, one has

to resort to additional relationships expressing the friction

coefficients in terms of the well defined quantities such as the

self-diffusion coefficients.

According to Bearman [27] the self diffusion coefficients

D�
1 ; D�

2 can be written as a function of the friction coefficients

and the molar concentrations as:

D�
1 Z

RT

N2
Aðc1z�11 Cc2z12Þ

D�
2 Z

RT

N2
Aðc2z�22 Cc1z12Þ

(5)

Here R represents the universal gas constant, T stands for

temperature in Kelvin, zi$i represents the friction factor of ith

substance isotopes and NA is the Avogadro number. The above

equations give the self-diffusion coefficient as experimentally

determined in a ternary radiotracer experiment. More

specifically, self-diffusion coefficients are measured by

labeling some molecules of one component, say component

1, and following the diffusion of the labeled and unlabeled

through the chemically homogenous solution. The system in a

radiotracer experiment can be treated as a ternary one

consisting of unlabeled component 1, labeled component 1

designated as 1* and component 2 (Ref. [22], p. 81). The above

equations were derived to describe the radiotracer experiments.

In Eq. (5), ci represents the total molar concentration

(labeledCunlabeled) of the ith substance. The proof of Eq.

(5) using classical thermodynamics is given in two ways in Ref.

[22] (p. 81–83) and its generalization to multi-component

systems is obvious.

To measure the self diffusion coefficients in a ternary system

(e.g. formamide–acetone–CA) one has to take into account a

quaternary system (experiment A: labeled formamide 1*,

formamide 1, acetone 2, CA 3, experiment B: formamide 1,

labeled acetone 2*, acetone 2, CA 3) and the following

equations are directly derived:

D�
1 Z

RT

c1z�11 Cc2z12 Cc3z13

;

D�
2 Z

RT

c2z�22 Cc1z12 Cc3z23

(6)

In Eqs. (5) and (6) the friction coefficients between isotopes

(z1*1, z2*2) are not equal to the friction coefficients of the

unlabelled compounds (z11, z22). Let us now assume that the

self-diffusion in a usual ternary diffusion experiment
(e.g. coating drying) can also be measured by a hypothetical

self-diffusion experiment conducted under carefully controlled

laboratory conditions using labeled compounds of the same

concentration and in the same temperature conditions as in the

usual ternary experiments. In this case, the self diffusion

coefficient in the ternary diffusion experiment (e.g. coating

drying) can be set equal to Eq. (6) which gives the self-

diffusion coefficient as measured by the labeled compound

experiments.

In the above equations, there are more friction coefficients

to define than available equations (high degree of freedom). For

example in the ternary system (non)-solvent(1)–solvent(2)–

polymer(3) system the ternary diffusion coefficients, Dij, are

related to the friction coefficients and the thermodynamic

properties by the following equations directly derived from

Eqs. (3), (4) and (6) [28]:

D11 ZK
�V1

N2
AE

E22

vm1

vu1

KE12

vm2

vu1

� �
(7)

D12 ZK
�V2

N2
AE

E22

vm1

vu2

KE12

vm2

vu2

� �
(8)

D21 ZK
�V1

N2
AE

E11

vm2

vu1

KE21

vm1

vu1

� �
(9)

D22 ZK
�V2

N2
AE

E11

vm2

vu2

KE21

vm1

vu2

� �
(10)

where NA is Avogadro’s number; Eij and E are defined as

E11 Z
�V1u2z12

v2u3

K
RT �V1ð1Ku2Þ

N2
ADT1u1u3

(11)

E12 Z
ð1Ku1Þz12

M2u3

K
RT �V2

N2
ADT1u3

(12)

E21 Z
ð1Ku2Þz12

M1u3

K
RT �V1

N2
ADT2u3

(13)

E22 Z
�V2u1z12

v1u3

K
RT �V2ð1Ku1Þ

N2
ADT2u2u3

(14)

E ZK
z2

12

M1M2u3

C
R2T2 �V1

�V2

N4
ADT1DT2u1u2u3

(15)

DTi Z
D�

i

1K D�
i =D

0
i

� �zD�
i ; D0

i Z
RTMivi

uizi�iN
2
A

(16)

The chemical potentials mi are directly calculated as a

function of polymer solution temperature and volume fractions

in the ternary system using Flory–Huggins theory [24]. D�
i

represents the self diffusion coefficient of the ith component in
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the ternary solution and is given as follows [20]:

D�
1 Z D01 e

Kðu1V�
1

Cu2V�
2

x13 =x23Cu3V�
3

x13Þ

VFH=g (17)

D�
2 Z D02 e

Kðu1V�
1

x23 =x13Cu2V�
2

Cu3V�
3

x23Þ

VFH=g (18)

VFH

g
Z

X3

iZ1

K1i

g
ðK2i KTgi CTÞui (19)

D0i is a pro-exponential factor, VFH is the average hole free

volume per kilogram of the solution and g is an overlap factor,

which is introduced, because the same free volume is available

to more than one molecule. V�
i is the specific critical hole free

volume of the ith component required for a diffusion jump and

xi3 represents the ratio of the critical molar volume of the

jumping unit of ith-solvent to that of the polymer. K1i and K2i

are free volume parameters for the ith component and Tgi is the

glass transition temperature. In the above equations ui

represents the weight fraction of the ith substance.

In Eqs. (7)–(19) the Fickain diffusion coefficients Dij are

related not only to self-diffusion coefficients, but also to the z12

friction coefficient which must be determined. This was the

starting point for several workers [16–19] to develop theories

relating the friction coefficients to standard properties such as

molar volume, molecular weight etc. These theories have

recently been reviewed by Price and Romdhane [29].

According to these workers the developed physical theories

can be classified in terms of the following equation:

zij

zik

Z
aj

ak

�Vj

�Vk

Mj

Mk

(20)

where ai are physical constants or functions used to scale the

friction coefficients and Mi stands for the molecular weight of

the ith substance, respectively. The resulting theories for

various ai values are summarized in Table 1. It can be shown

that most theories assume constant friction coefficient ratios. A

deeper question arises from Eq. (20): Is the ratio of the friction

coefficients constant in diffusing polymer solutions?

As was shown by Bearman [30], the mutual diffusion

coefficient in the case of binary solutions and constant friction

coefficient ratio is given as a function of solvent mass

concentration r1, chemical potential m1 and the self-diffusion

coefficient D�
1 by the following equation [31]:

D12 Z
D�

1

RT

vm1

v ln r1

(21)

This equation relates the mutual diffusion coefficient with

the solvent self-diffusion coefficient. The authors are aware that
Table 1

Models for multi-component diffusion

Model References

aiZ1, iZ1,2,.,N Alsoy and Duda [16]

ai Z �VK1
i ; iZ1; 2;.N Zielinski and Hanley [17]

aiZ0, isN, aNs0 Dabral et al. [19]
more rigorous approaches correlating the self- and the binary

diffusion coefficients over a wide solvent concentration range

including the dilute region appeared in the open literature [32].

However, one could use Eq. (21) correlating the self-diffusion

coefficient with the mutual diffusion coefficient to check the

validity of the assumptions made in its derivation such as the

constant friction coefficients ratio.

This task is achieved by using free-volume theory [33] to

describe the dependence of the solvent self-diffusion coeffi-

cient on temperature and concentration as well as Flory–

Huggins thermodynamics [24] for chemical potential. As it was

shown by several workers, the mutual and self-diffusion

coefficients for binary solvent–polymer systems are satisfac-

torily correlated by the above equation thus validating the

assumption of constant friction coefficient ratio for the binary

polymer–solvent systems [34,35].

However, Zielinski and Alsoy [36] in a subsequent work

have raised doubts about the models based on the assumption

of constant friction factor ratios in multi-component solutions.

Moreover, there is no clear reason to apply one theory (Table 1)

instead of another.

The aim of this work is to overcome these difficulties and

suggest a unique theory for diffusion in multi-component

polymer solutions. The starting point in our analysis is the

definition of Onsager Lij mobility coefficients [25]. Following

Onsager we shall assume that the molar fluxes Ji in a

N-component system can be expressed as a linear combination

of the vector of chemical potential gradients Xi and a N!N

matrix of Onsager Lij mobility coefficients:

Ji Z sLijsX ; Xi ZKgradmi; Ji Z ciðViKVRÞ (22)

where VR is the velocity of an arbitrary reference framework.

By inverting the above equations one gets:

Xi Z sLijs
K1Ji Z szijsJi; i Z 1; 2;.;N;

j Z 1; 2;.;N
(23)

By applying the Gibbs-Duhem theorem for isothermal and

isobaric systems Eq. (23) is written as [22]:

XN

kZ1

ck

dmk

dz
Z 0 or

XN

kZ1

XN

iZ1

zikckJi

Z
XN

iZ1

Ji

XN

kZ1

ckzik Z 0 or
XN

kZ1

ckzik Z 0 i Z 1; 2;.;N

(24)

Price and Romdhane [29] first showed the importance of the

Gibbs-Duhem theorem. More specifically, they reported

substantial errors in polymeric drying coating simulations by

using literature models (Table 1) when this theorem was

violated. The importance of this theorem is further shown in

the subsequent paragraphs
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By multiplying the above equation by (ViKVR) and

subtracting the result from Eqs. (3) and (23) is derived [22]:

dmi

dz
ZK

XN

kZ1

ck½zikðViKVRÞKzikðVk KVRÞ�

ZK
XN

kZ1

ck½zikðViKVkÞ� (25)

Finally, Miller [37] (Ref. [22], p. 50) using Eqs. (22)–(25)

derived the Onsager reciprocal conditions:

zik Z zki i Z 1; 2;.;N; k Z 1; 2;.;N (26)

The following equation between molar volumes and molar

concentrations also holds [22]:

XN

iZ1

civi Z 1 (27)

By using the above equation along with Gibbs-Duhem

equations and by calculating the derivatives with respect to

molar concentration, one directly derives the following

equation for the case of the constant friction coefficient ratios:

zij

zkj

Z
vi

vk

Z
�Vi

�Vk

Mi

Mk

(28)

This equation proposed also by Alsoy and Duda

(Table 1), simultaneously satisfies the Onsager reciprocal

condition as well as the Gibbs-Duhem theorem along with

the concept of constant friction coefficient ratios. Although

the theory proposed by Alsoy and Duda [16] satisfies the

Gibbs-Duhem theorem contrary to the other theories

summarized in Table 1, doubts about this theory have

been raised in the literature due to the assumption of

constant friction coefficient ratios made [29]. The aim of the

present work is to propose a theory based on the Gibbs-

Duhem theorem without making the assumption of constant

friction coefficient ratios.

By eliminating the molar concentrations in Eq. (24) and by

applying the Onsager reciprocal rule the following equation is

derived (Appendix A for a detailed proof):

z2
ij Z ziizjj (29)

This equation was also proposed by Price and Romdhane

[29]. The above equation along with the Gibbs-Duhem

equations is the key in our analysis for multi-component

diffusing systems.

Regarding the multi-component system consisting of NK1

low molecular weight substances and a polymer, the

application of the Gibbs-Duhem theorem leads to the

calculation of the friction coefficients if the low molecular

weight substances self diffusion coefficients are known. For

example, the Gibbs-Duhem equations (Eq. (24)) for a diffusing
ternary system are written as:

X3

kZ1

ckzik Z 0 i Z 1; 2; 3 z12 Z
ffiffiffiffiffiffiffiffiffiffiffiffi
z11z22

p

or

c1z11 Cc2z12 Cc3z13 Z 0;

c2z22 Cc1z12 Cc3z23 Z 0;

c3z33 Cc2z23 Cc3z13 Z 0

(30)

The friction coefficients z13 and z23 are related to z12 in

terms of the respective Bearman equations for the self-

diffusion coefficients (Eq. (6)) as follows [28]:

z13 Z
v3

u3

RT

N2
ADT1

K
u2

v2

x12

� �
; z23 Z

v3

u3

RT

N2
ADT2

K
u1

v1

x12

� �
;

DTi Z
D�

i

1KðD�
i =D

0
i Þ

zD�
i ; D0

i Z
RTMivi

uizi�iN
2
A

; i Z 1; 2

(31)

According to Vrentas and Duda [28,33] one could

assume ðD�
i =D

0
i ÞZ0 in the case of moderate concentrated

solution (u3O0.2) as the error introduced by the above

simplification is quite small Eqs. (30) and (31) result in a

simple quadratic equation which is directly solved to

calculate z12 and consequently Dij (Eqs. (7)–(19)) in terms

of the self-diffusion coefficients and the process conditions.

In the following section, the previously described method-

ology is applied to the evaporation process of the

formamide–acetone–CA solution which is widely used in

the asymmetric membrane manufacture.
3. Theory application to the formamide–acetone–CA

system

Modeling multi-component diffusion is not an easy task. A

typical example is the paradox of physically unrealistic

concentrations in ternary diffusion [18]. More specifically, if

ternary diffusion is considered as a one dimensional

experiment then physically unrealistic concentrations are

obtained for given initial concentrations and diffusion

coefficients [18]. To illustrate this paradox a diffusion cell is

considered. This cell comprises two compartments separated

by a semi-permeable membrane which allows diffusion of the

solutes A and B but not of the balancing component C. The

diffusion cell is quite large so at the edges there is a constant

concentration at any time. If we neglect the volume change of

each compartment then analytical solutions of the resulting

1-dim problem are available [21]. These analytical solutions

give reasonable results for small values of initial concen-

trations of solutes A and B. If higher concentrations of A and B

are assumed then physically unrealistic concentrations of the

balancing component C are observed [18]. Obviously, in this

case the volume change of each cell compartment due to the

mass transfer of A and B across the semi-permeable membrane
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can not be neglected and one has to consider the additional

volume change in each compartment of the diffusion cell.

Similar discrepancies (physically unrealistic concentrations)

could occur due to the violation of the Gibbs-Duhem theorem

or due to the assumption of constant friction coefficients ratios

[29]. The aim of this work is to overcome these difficulties

and propose a unique theory for multi-component diffusion in

polymer solutions
3.1. The model equations

The system formamide–acetone–CA was the subject of

extensive experimental investigation in asymmetric membrane

formation [38–41]. Fig. 1 depicts the solvent evaporation

process of the ternary system formamide–acetone–CA. The

solution is spread on a solid support with thickness Lsup, which

rests upon an insulating block. Heat is exchanged between the

solution and the support as well as between the solution and the

environment. Initially, the whole system (solution, ambient air,

support) is at temperature T0 and the polymer solution

thickness is L0. At time tZ0 the ternary polymer solution is

exposed to the environment and the solvent(s) begins to

evaporate. At time t the polymer solution extends from

coordinate zZ0 at the upper glass plate to zZL(t) at the gas–

liquid moving interface, while the glass support has a constant

thickness extending from zZ0 to zZKLsup.

From a modeling point of view this is a coupled heat and mass

transfer process with a moving boundary. Since diffusion is

much slower than the relaxation mechanisms of the polymer

chains in the solution, we assume pure Fickian diffusion [42–55]

. Additionally, the process is considered as 1-dim model due to

the relatively small initial thickness of the polymer solution

(order of mm) compared to the width and length (order of cm)

[42–55]. The dimensionless governing equations describing the

conservation of mass and energy in an one phase ternary system
Fig. 1. Schematic representation of the solvent(s) evaporation process.
and the support are written as follows [54]:

vu1

vt
Z

v

vh
C1

vu1

vh

� �
C

v

vh
C2

vu2

vh

� �
; h Z z=L0;

t Z D0t=L2
0; C1 Z

D11

D0

; C2 Z
�V1

�V2

� �
D12

D0

;

0!h!s Z
LðtÞ

L0

(32)

vu2

vt
Z

v

vh
C3

vu1

vh

� �
C

v

vh
C4

vu2

vh

� �
;

C3 Z
�V2

�V1

� �
D21

D0

; C4 Z
D22

D0

; 0!h!s

(33)

C5

vQ

vt
Z

v

vh
C6

vQ

vh

� �
; Q Z

T

T0

; C5 Z
rsCps

r0Cp0

;

C6 Z
ks

D0r0Cps

; 0!h!s

(34)

C7

vQsup

vt
Z

v

vh
C8

vQsup

vh

� �
; C7 Z rsupCpsup=r0Cp0;

C8 Z ksup=r0Cp0D0; KLsup=L0 !h!0

(35)

In this work subscript 1 refers to formamide, 2 denotes

acetone and subscript 3 represents CA. hZz/L0 is the

dimensionless space coordinate; tZD0t=L2
0 is dimensionless

time; QZT/T0 is the dimensionless temperature; sZL(t)/L0 is

the dimensionless position of the moving boundary. Dij are the

appropriate phenomenological diffusion coefficients for the

ternary system. Equations for Dij were presented in the previous

section. T represents the temperature, t denotes time and D0 is a

scaling factor having the units of diffusion coefficient rs, Cps and

ks represent density, specific heat capacity and thermal

conductivity of the polymer solution, respectively. Cp0, r0 are

scaling factors having units of specific heat capacity and density,

respectively. Subscript ‘sup’ denotes properties and variables of

the support.

Initial and boundary conditions for the diffusion equation:

u1 Z u10; u2 Z u20; t Z 0 (36)

C1vu1=vh CC2vu2=vh Z C9;

C9 ZKL0jsF;int
�V1=D0; h Z s

(37)

C3vu1=vh CC4vu2=vh Z C10;

C10 ZKL0jsA;int
�V2=D0; h Z s

(38)

vu1

vh
Z 0;

vu2

vh
Z 0 h Z 0 (39)

Eq. (36) gives the initial concentration for formamide and

acetone. Eqs. (37) and (38) are mass balances at the moving

interface and Eq. (39) specifies zero mass flux at the glass plate.
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jsA;int and jsF;int are the mass flux of acetone and formamide, at

the gas–liquid interface.

Initial and boundary conditions for the energy equations:

Q Z Qsup Z 1 t Z 0 (40)

C6

vQ

vh
Z C11ðQs;int K1ÞCC12ð1KQ4

s;intÞKC13;

C11 Z
L0h

D0r0Cp0

; C12 Z
L03sT3

0

D0r0Cp0

;

C13 Z ððDH1Þj
s
A;int C ðDH2Þj

s
F;intÞL0=ðT0D0r0Cp0Þ; h Z s

(41)

C8vQsup

vh
Z

C6vQ

vh
h Z 0 (42)

vQsup

vh
Z 0 h ZK

Lsup

L0

(43)

Eq. (40) gives the initial temperature in the support and the

solution. Eq. (41) is an energy balance at the polymer solution–

gas interface, taking into account heat transfer to the polymer

solution, due to free convection and radiation as well as latent

heat loss, due to acetone and formamide evaporation. Eq. (42)

accounts for continuity of heat flux at the glass plate-polymer

solution interface, while Eq. (43) stands for perfect insulation

of the glass support lower surface. Qs,int denotes the

dimensionless temperature of the liquid–gas interface, h is

the heat transfer coefficient, 3 is the emissivity of the polymer

solution, s denotes the Stefan-Boltzman constant and DHi is

the ith substance latent heat of vaporization.

Finally, the instantaneous dimensionless solution thickness

sZL(t)/L0 is obtained from the following differential equation

[54]:

u3

ds

dt
Z C9 CC10; t Z 0; s Z 1 (44)

Eq. (44) defines the instantaneous position of the moving

boundary in terms of the polymer volume fraction u3Z(1K
u1Ku2). The above equation is solved along with the governing

equations of the model (Eqs. (32)–(35)) to give the

concentration profiles of acetone and formamide along with

the temperature of the solution and the support and the position

of the moving boundary as a function of time.
3.2. The model parameters

The density, the specific heat capacity and the thermal

conductivity of the polymer solution were calculated by a

simple addition rule, assuming constant partial properties

[42–55]. The thermophysical properties of the polymer

solution constituents and the glass support are given as a

function of the solution temperature in standard references

[56–58]. The heat transfer and the mass transfer rates at the

polymer–solution gas interface were calculated from appro-

priate semi-empirical correlations [54]. Flory–Huggins
thermodynamics was used to describe the variation of chemical

potential with respect to process conditions [59]. The acetone–

CA Flory–Huggins interaction parameter is given elsewere

[59]. The other Flory–Huggins interaction parameters were

calculated from vapor pressure data over the binary for-

mamide–acetone [60] (c12) and ternary solutions [40] (c13):

c13 Z 0:855; c12 Z 0:993K0:383H2 C1:2H2
2 ;

H2 Z
u2

ðu1 Cu2Þ

(45)

According to Vrentas-Duda and co-workers [20,61] the

solvents free volume parameters could be estimated from pure

substances data. The free volume parameters (Eqs. (27)–(29))

for acetone and CA are given in full detail elsewhere [54].

Regarding the pro-exponential factor of the formamide self-

diffusion equation (D01, Eq. (27)) was found to be equal to

1.73!10K7 m2/s by using the Dullien correlation [61,62].

The formamide specific critical hole free volume V�
1 was

estimated by using group contribution methods [63] equal to

0.86!10K3 m3/kg. The formamide free volume parameter

(K21KTg1, Eqs. (27)–(29)) was directly estimated to be equal

to K74.2 K by using the Doolittle equation [64] and the

Goletz-Tassios correlation [65] for the prediction of liquid

viscosity vs. temperature data combined with the Vrentas-

Duda equation [32]. The parameter (K11/g) was calculated

equal to 6.9!10K7 m3/kg.K by fitting formamide viscosity-

temperature data [58]. Finally, the parameter x is defined as

the ratio of the critical molar volume of the solvent jumping

unit to that of the polymer jumping unit [20]. Ju et al. [66]

proposed a linear relationship between x and the solvent

molar volume at 0 K estimated from group contribution

methods [63]:

x Z aVð0Þ (46)

where a is a constant which has been determined from the

polymer–solvent diffusion data. Once a is known for a

particular polymer, the value of x for any solvent in this

polymer can be estimated assuming that the solvent moves as

a single unit. The x23V�
3 parameter for the acetone–CA

solution is equal to 0.64!10K3 m3/kg, according to our

previous work [35,54]. The specific critical hole free volume

of CA is equal to 0.61!10K3 m3/kg [54]. Therefore, the

value of a for this polymer is equal to 0.0192!10K6 g mol/

m3. Consequently, x13 was found equal to be equal to 0.74 by

using Eq. (46) and the previously determined molar volume of

formamide at 0 K.
3.3. Finite element formulation

The resulting system of the governing equations (Eqs. (32)–

(35)) augmented by the moving boundary equation (Eq. (44))

along with the initial and boundary conditions is solved with

the Galerkin finite element method. According to this method

the final formulation of the weighted residuals Ri (after

expanding the unknown variables in quadratic basis functions

(fi), introducing convective terms in the governing equations,
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Fig. 2. Comparison of model predictions for polymer solution weight with

experimental data [40].
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due to the transformation of partial to total time derivatives and

applying the divergence theorem) becomes:

Ri
M1 Z

ðs

0

vu1

vt
4

iK
dh

dt

vu1

vh
4

i C
v4i

vh
C1

vu1

vh

� �	

C
v4i

vh
C2

vu2

vh

� �

dhK C1

vu1

vh
CC2

vu2

vh

� �
4ij

hZs
hZ0

(47)

Ri
M2 Z

ðs

0

vu2

vt
4iK

dh

dt

vu2

vh
4i C

v4i

vh
C3

vu1

vh

� �	

C
v4i

vh
C4

vu2

vh

� �

dhK C3

vu1

vh
CC4

vu2

vh

� �
4i hZs

hZ0

���
(48)

Ri
E;sol Z

ðs

0

C5

vQ

vt
4iK

dh

dt

vQ

vh
C54i C

v4i

vh
C6

vQ

vh

� �	 

dh

KC6

vQ

vh
4i hZs

hZ0

���
(49)

Ri
E;sup Z

ð0

KL=Lsup

C7

vQsup

vt
4i C

v4i

vh
C8

vQsup

vh

� �	 

dh

KC8

vQsup

vh
4ij

hZ0
hZKLsup=L0

(50)

The computational domain was discretized in 70 elements.

The residuals are numerically evaluated by using three point

Gaussian integration. The time integration follows the Euler

backward scheme. A system of non-linear algebraic equations

results which is solved with the Newton–Raphson iterative

method according to scheme q(nC1)Zq(n)KJK1R(q(n)), where

q(n) is the vector of unknowns of the nth iteration and J is the

Jacobian matrix of residuals R with respect to the nodal

unknowns q(n). The time step was equal to 10K4. The computer

program exhibits quadratic convergence in 4–6 iterations at

each time step. Any additional mesh refinement or time step

decrease has an improvement of less than 10K6 in the accuracy

of the solution. A detailed presentation of the finite element

technique that enables the simultaneous solution of the primary

unknowns of the problem (volume fractions and temperature)

with the moving boundary can be found elsewhere [54,67].
0 100 200 300 400

Time (s)

16.0

17.0

18.0

Fig. 3. Model predictions for polymer solution surface temperature vs.

experimental data [40].
4. Results and discussion

In Figs. 2 and 3 the model predictions are compared with

experimental data for polymer solution weight and surface

temperature vs. evaporation time. It was found convenient to

represent polymer solution weight as the ratio of the acetone

plus formamide weight to the cellulose acetate weight
presented in the polymer solution. The experimental data

and conditions of Ohya and Sourirajan [40] were used in our

numerical experiments. The initial conditions are summarized

in Table 2. Only acetone was assumed to evaporate due to the

high boiling point of formamide compared to that of acetone.

Please note that in our numerical experiments there are no

adjustable parameters and all model parameters were estimated

from literature data. In Figs. 2 and 3 a satisfactory agreement

between model predictions and experimental data [40] is

depicted thus validating the present theory. The observed

discrepancy at the surface temperature profiles after 200s is

attributed to errors in the semi-empirical correlations used



Table 2

Initial experimental conditions [40]

Quantity Value Units

Initial temperature, T0 297 K

Glass support thicknessa, Lsup 2!10K3 m

Initial acetone weight fraction 0.45

Initial formamide weight fraction 0.25

Initial solution weight 2.4 gr

Casting surface 64.2 cm2

Initial solution thickness, L0 Calculated from the

initial conditions

a Assumed
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Fig. 5. Effect of support thickness on polymer solution surface temperature.
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for the heat transfer and mass transfer at the gas–liquid

interface.

Satisfactory results using the previously described method-

ology for the calculation of the friction coefficients were also

obtained for the diffusing system water–acetone–CA [68]. The

authors are aware that further validation of their theory may be

required by comparing model predictions with the available

data not only from open literature but also from industry. Since,

this is not possible due to the large amount of data, the source

codes of this work are at the disposal of our colleagues from

both academia and industry if they wish to further validate this

theory. The source codes can be obtained by directly contacting

the authors.

In Fig. 4 the concentration profiles in the ternary diagram

formamide–acetone–CA are plotted for two different times

along with the experimental gel curve [69] and the calculated

binodal. Unlike to the water–acetone–CA system [54,68]

smooth profiles were observed in this work. This is attributed to

the higher affinity of formamide with respect to acetone and CA

compared to the small affinity of water in the acetone–water–

CA system. It is also shown that a considerable amount of the

solution is in the gel state and no phase separation occurs due to

liquid–liquid de-mixing for the conditions used in our

numerical experiments. This observation is in accordance

with SEM experimental data [39] for gel formation under the

same experimental conditions.
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Fig. 4. Typical ternary concentration profiles.
A parametric analysis was carried out to justify the results

due to the uncertainty in the heat transfer characteristics of the

support (insulation, thickness) which are assumed in

the present work. Although the heat transfer characteristics

of the support or the used semi-empirical correlations for the

heat transfer and mass transfer at the gas–liquid interface

influence polymer solution surface temperature (Fig. 5) they

have little effect on gravimetric results (Fig. 6). This is

attributed to the fact that diffusion is mainly controlled by the

transport phenomena inside the polymer film [42–55].

Consequently, this analysis further justifies the results as the
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Fig. 6. Effect of support thickness on polymer solution weight.



G.D. Verros, N.A. Malamataris / Polymer 46 (2005) 12626–12636 12635
error introduced in the gravimetric results, due to uncertainty in

the heat and mass transfer coefficients, is quite small.
5. Conclusions

In the present work a novel theory for multi-component

diffusion in polymer solutions is proposed. This theory is based

on well-established principles such as the Gibbs-Duhem

equations for diffusing systems. It is shown that application

of the Gibbs-Duhem theorem along with the simple geometric

rule to a ternary system solvent (1)–solvent(2)–polymer(3)

leads to further estimation of the Fickian diffusion coefficients

as a function of the solvents self diffusion coefficients,

chemical potential as well as process conditions. It is believed

that this theory could be generalized to other multi-component

systems having more than three constituents.

Finally, the above theory was validated against established

experimental data for acetone evaporation from the ternary

formamide–acetone–cellulose acetate system which is used

in asymmetric membrane preparation. The model predictions

are in excellent agreement with experimental data for

polymer solution weight and surface temperature thus

validating the applied methodology for the calculation of

friction coefficients.

The described methodology may be applied to processes

such as asymmetric membrane formation, controlled drug

release, drying of coatings and reverse osmosis that exhibit

similar multi-component diffusion phenomena thus leading to a

more rational design of processes and products.
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Appendix A

One can directly show the geometric rule by eliminating the

concentrations in the Gibbs-Duhem equations for a binary

system. In a ternary diffusing system the Gibbs-Duhem

equations are written as:

c1z11 Cc2z12 Cc3z13 Z 0;

c2z22 Cc1z12 Cc3z23 Z 0;

c3z33 Cc2z23 Cc3z13 Z 0

(A1)

We define the arbitrary functions lij as:

z12 Z l12

ffiffiffiffiffiffiffiffiffiffiffiffi
z11z22

p
; z13 Z l13

ffiffiffiffiffiffiffiffiffiffiffiffi
z11z33

p
;

z23 Z l23

ffiffiffiffiffiffiffiffiffiffiffiffi
z22z33

p (A2)

By eliminating the concentrations c1 or c2 in Eq. (A1) and

by introducing the lij functions the following equations are
derived:

c2
2z22ðl

2
12 K1Þ Z c2

3z33ðl
2
13 K1Þ; c2

3z33ðl
2
23 K1Þ

Z c2
1z11ðl

2
12 K1Þ (A3)

In other words, the Gibbs-Duhem equation states that if one

lij is equal to unity, all the other l are equal to unity. For

example by assuming l12Z1 then l12Zl13Z1 due to the

Gibbs-Duhem theorem (Eq. (A3)). Please notice, that for a

ternary system the following equation holds [22]:

c1v1 Cc2v2 Cc3v3 Z 1 (A4)

where vi is the molar volume of the ith substance. By (i) solving

Eqs. (A1) and (A4) with respect to c1 (ii) introducing the

functions lij (iii) dividing the ith equation of the system by

(zii)
0.5 the above system (Eqs. (A1) and (A4)) is written in a

matrix form as:

AC Z B;

A Z

l12z0:5
22 Kðv2=v1Þz

0:5
11 l13z0:5

33 Kðv2=v1Þz
0:5
11

ðz22Þ
0:5Kl12ðv2=v1Þz

0:5
11 l23z0:5

33 Kðv2=v1Þl12z0:5
11

ðz22Þ
0:5Kl13ðv2=v1Þz

0:5
11 z0:5

33 Kðv2=v1Þl13z0:5
11

0
BB@

1
CCA

(A5)

C Z
c2

c3

� �
; B Z

Kz0:5
11 =v1

Kl12z0:5
11 =v1

Kl13z0:5
11 =v1

0
BB@

1
CCA

As the Gibbs-Duhem theorem holds for arbitrary friction

coefficients as well as molar concentrations and not for specific

values, one could safely conclude that the rank of matrices A

and B is equal to unity and at least one lij is equal to unity.

Consequently, all the lij are equal to unity due to Eq. (A3).

Therefore, for a ternary system the mean geometric rule holds:

z12 Z
ffiffiffiffiffiffiffiffiffiffiffiffi
z11z22

p
; z13 Z

ffiffiffiffiffiffiffiffiffiffiffiffi
z11z33

p
; z23 Z

ffiffiffiffiffiffiffiffiffiffiffiffi
z22z33

p
(A6)

By using a similar methodology the mean geometric rule

can be proved for a quaternary system and so forth.
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